Natural gradient via optimal transport I
نویسندگان
چکیده
We study a natural Wasserstein gradient flow on manifolds of probability distributions with discrete sample spaces. We derive the Riemannian structure for the probability simplex from the dynamical formulation of the Wasserstein distance on a weighted graph. We pull back the geometric structure to the parameter space of any given probability model, which allows us to define a natural gradient flow there. In contrast to the natural Fisher-Rao gradient, the natural Wasserstein gradient incorporates a ground metric on sample space. We discuss implementations following the forward and backward Euler methods. We illustrate the analysis on elementary exponential family examples.
منابع مشابه
Characterization of Lithium Ion Transport Via Dialysis Process
Dialysis is a membrane based separation process in which the concentration gradient across the membrane is the driving force resulting in a flow of material from one side <span style="font-size: 10pt; ...
متن کاملNumerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control
In the present paper, optimal heating of temperature field which is modelled as a boundary optimal control problem, is investigated in the uncertain environments and then it is solved numerically. In physical modelling, a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem. Controls are implemented ...
متن کاملDecoupling of DeGiorgi-type systems via multi-marginal optimal transport∗
We exhibit a surprising relationship between elliptic gradient systems of PDEs, multi-marginal MongeKantorovich optimal transport problem, and multivariable Hardy-Littlewood inequalities. We show that the notion of an orientable elliptic system, conjectured in [6] to imply that (in low dimensions) solutions with certain monotonicity properties are essentially 1-dimensional, is equivalent to the...
متن کاملOn Fluid mechanics formulation of Monge-Kantorovich Mass Transfer Problem
The Monge-Kantorovich mass transfer problem is equivalently formulated as an optimal control prblem for the mass transport equation. The equivalency of the two problems is establish using the Lax-Hopf formula and the optimal control theory arguments. Also, it is shown that the optimal solution to the equivalent control problem is given in a gradient form in terms of the potential solution to th...
متن کاملA Numerical Algorithm for L2 Semi-discrete Optimal Transport in 3d
This paper introduces a numerical algorithm to compute the L2 optimal transport map between two measures μ and ν, where μ derives from a density ρ defined as a piecewise linear function (supported by a tetrahedral mesh), and where ν is a sum of Dirac masses. I first give an elementary presentation of some known results on optimal transport and then observe a relation with another problem (optim...
متن کامل